Leture!. Moment-pinerating functions.

\nLet
$$
D
$$
 be a probability space and $X: L \rightarrow \mathbb{R}$

\nor random variable.

\nDefine W is called the $n-k$ matrix. Let $f(x)$ be a pdf on (X, \mathbb{R}) . Then

\nLet $f(x)$ be a pdf on (X, \mathbb{R}) . Then

\nLet $f(x)$ be a pdf on (X, \mathbb{R}) . Then

\nLet $f(x)$ be a pdf on (X, \mathbb{R}) . Then

\nLet $f(x)$ be a path on (X, \mathbb{R}) . Then

\nLet $f(x)$ be a path on (X, \mathbb{R}) , the mean value.

\n(a) $n=2$. Using $E(x)$ and $E(x^*)$ allows $+o$ find $\sqrt{a}x$. Then

\n $\sqrt{a}x$ is a graph of x and 0 are a sequence. By $f(x) = \sum_{k=0}^{n} a_k x^k$ is a spanned by a and 0 and <math display="</p>

The f-n q(t) is called a generative f-n.
\nConsider the f-n M(t):=
$$
E(e^{tx}) = AeE(X) \div e \frac{E(X)}{x}
$$
 t⁻;
\n $DEf-n$ M_x (t) is called the momento-
\na random variable X. (a) $\frac{F(x)}{F(x)}$ t⁻ n of
\na random variable X. (a) $\frac{F(x)}{F(x)}$
\n $\frac{F(x)}{F(x)}$ is a $P(X=1) = p$ and $P(X=0) = 1-p$.
\n $M_X(t) = E(e^{tx}) = (tp)e^{t-0} + p \cdot e^{t-1} = 1-p + pe^t$.
\n(2) X is uniform on the interval $E(x)$ x² t² = 1
\n $F_X(x) = \frac{1}{2-0} = \frac{1}{2}$, as xz and $F_X(x)=0$, where w is e.
\n $M_X(t) = E(e^{tx}) = \int_{0}^{2} F_X(x) \cdot e^{tx} dx = \frac{1}{2} \int_{0}^{2} e^{tx} dx = \frac{1}{2} e^{tx} \Big|_{0}^{2} = \frac{1}{2} (e^{2tx} - 1)$.
\n $\frac{E(x)(x)}{F(X)} = \frac{1}{2} (e^{2tx} - 1)$.
\n $\frac{E(x)(x)}{F(X)} = \frac{e^{tx} - e^{tx}}{x}$

 $M_X(t) = \mathbb{E}(e^{tx}) = \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} e^{tx} e^{-\frac{x^2}{2}} dx = \int_{-\infty}^{\infty} e^{tx - \frac{x^2}{2}} dx = ?$ Fo find this integral (the auti-dar.), we follow the 2-step precedure". 1 complète the square in the power of expenent. O Po à variable substitution to obtain à 'standard' Gaussion integral. $1. \quad \forall x - \frac{x^2}{2} = 4\frac{y^3}{2} + \frac{1}{2}\frac{(x - \frac{y}{2})^2}{2} + 2\frac{y}{2} + \frac{z}{2} - \frac{1}{2} + \frac{z^2}{2} = -(\frac{x - \frac{1}{2}}{\sqrt{2}})^2 + \frac{1}{2}$ 2. $\frac{1}{\sqrt{2N}}\int_{-\infty}^{\infty}e^{tx-\frac{x^{2}}{2}}dx=\int_{-\infty}^{\infty}e^{-\frac{(x-t)^{2}}{\sqrt{2N}}}}e^{-\frac{(x-t)^{2}}{\sqrt{2}}}\frac{e^{tx}}{x}=\frac{e^{t^{2}/2}}{\sqrt{2N}}\int_{-\infty}^{\infty}e^{-\frac{(x-t)^{2}}{\sqrt{2N}}}}dx$ $\frac{u^2 + u}{u^2 + u^2} = \frac{e^{t^2/2}}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-\frac{u^2}{2}} du = \frac{e^{t^2/2}}{\sqrt{2\pi}} \cdot \sqrt{2\pi} \cdot e^{t^2/2}$ RMK: not all random variables have an mgf, since $M_X(t)$ = $E(e^{tX})$ may not be finite on any open interval combanning O. Example. Let X have plf $f_X(k) = \frac{1}{x^2}$ $X \ge 1$. Then
 $M_X(k) = \int \frac{1}{x^2} e^{kx} dx$. $\left(\int \frac{1}{x^2} dx = \frac{1}{x} \int_{0}^{\infty} = 1 \right)$
Notice that for any fixed $t > a_1$, $\int_{x \to \infty}^{1} \frac{e^{kx}}{x^2} = \frac{1}{x^{2}} \int_{0}^{\infty} \frac{1}{x} dx$.

 ω

Properties of mgf.

 (1) $M \times 10$ $= 1$ (c) Let X be a random variable with mgf Mxlt), then the mgf of axel is Maxel (+)= e^{6t} Mx (at). (3) Let l'Xillee indep. random variables and Mx. (t) the carresponding mgfs. Then for X = Eachi, we have $M_{x}(t)$ = $M_{x}(a_{t})$... $M_{x_{n}}(a_{n}t)$, here $a_{x_{1}}$, an are constants. (4) Let X and Y be two random variables with
equal mg fs, i.e. Mx(t)=My(t). Then $F_X(x)$ =Fy(x). Ruck: This does not imply that $f_{x}(x) = f_{y}(x)$. But this is true at "almost all points". Exercise: verify (1)-13), using properties of 11. Pract of (4) in case X and Y are discrete roundom variables taking only finitally many values:
Let Sx² Lx1, -, Xn4 and S_Y = Ly1, -, ym4 be the parob, values
Epoces of X and Y. Similarly Sxur = Sx U Sx : = LS1, --, Sx 4.

Then
$$
M_X(t) = \sum_{i=1}^{k} p_X(s_i) \cdot e^{sx^2}
$$
, where $p_X(s_i) = 0$, if $s_i \notin X$.
\nSimilarly, $M_Y(k) = \sum_{k=1}^{k} p_Y(s_i) \cdot e^{sx^2}$.
\nAs $M_X(t) = M_Y(k)$, $w = \text{have } W \geq (p_X(s_i) - p_Y(s_i)) e^{sx^2} = 0$.
\nFor k in some interval $t \in k$, E , E).
\nSince (k) is true for int . B may always of t , we must
\nhave $p_X(s_i) = p_Y(k)$ for all i . B .
\nHence $p_X(s_i) = p_Y(k)$ for all i . B .
\nHence $p_X(s_i) = p_Y(k)$ for all i . B .
\nHence $p_X(s_i) = p_Y(k)$ for all i . B .
\nHence, $h_X(t) = h_X(t)$, $h_X(t) = h_X(t)$ for all i and i

Other applications of mghs.

\n(i)
$$
E(X) = M'_X(0)
$$

\n(2) $Var(X) = E(X^*) - E^2(X) = M'_X(0) - (M'_X(0))^c$.

\nExemples.

\n(i) $X - Bernoulli$ random variable.

\n(ii) $X - Bernoulli$ random variable.

\n(iii) $\frac{1}{2} \int_{x=0}^{x=1} E(X^*) = M'_X(k)|_{x=0} = p e^k |_{x=0} = p$.

\n(iv) $X - Bernoulli$ random variable.

\n(v) $X - Bernoulli$ random variable.

\nExemples.

\nExemples:

\n $Var(X) = n + e^{-x}$

\nExemples:

\n(a) $\frac{Var(X) = n + e^{-x}}{Var(N - x)}$

\nExemples:

\nEx

Example (HW exercise, p. 9, #3). Find the most, expected value and variance for the
distribution $f_x(x) = xe^{-x}$ for $x \ge 0$. with paf We check that fx(x), indeed, defines a polf: $\int xe^{-x}dx \frac{by parts}{1-x} -x e^{-x}\int_{0}^{\infty} e^{-x}dx =0-e^{-x}\int_{0}^{\infty}e^{-x}dx$ $= 0 - (-1) = 1 \sqrt{2}$ $M_X(t) = \int xe^{-x}dx dx = \int xe^{x(t-t)}dx$. Notice that the last integral diverge for $\begin{array}{c} \text{for } t>1,50 \\ \text{we assume } t<1 \text{ and } st \text{ } t: z \times (t-1) \end{array}$. Then dazle-video the assume that set $\begin{array}{c} \text{for } t>1,50 \\ \text{This substitution allows } t \text{ or } w\tau\text{ if } t \text{ is } x(t-1) \text{ if } x \in \mathbb{R} \end{array}$ $=\int \frac{1}{(t-1)^2}e^{z}dz$ (notice that when $x\rightarrow\infty$, $t=x(t-1)\rightarrow-\infty$, since $f(t)$. $\sqrt{1-t^2} e^{t^2} \left(e^{t-1} \right)^2$. $M'_x(k) = \frac{-2}{(k-1)^3} \Rightarrow E(k) = M'_x(k) = \frac{-2}{-1} = 2.$
 $M_x''(k) = \frac{6}{(k-1)^3} \Rightarrow E(k^2) = M'_x(k) = \frac{6}{1} = 6.$
 $\Rightarrow E = 2^2 = 2.$

Rank: Recall the Central Limit Theorem (CLT):

\nLet
$$
X_{1,-1}X_{1}
$$
 be 2.2.1.1. random variables with $E(X_{1})=1$.

\nand Var($X_{1}=1$).

\nThen for $n \gg 0$, $\frac{X_{1}e_{1}-1X_{1}-nA}{\sqrt{n}e} \rightarrow 2:2$ $N(a_{1}1)$.

\nThe CLT can be proved by showing that $\lim_{n\to\infty} M_n(k) = M_2(k) = e^{k^2/2}$, where $M_n(k) := M_{\frac{X_{1}e_{1}-1}{\sqrt{n}e}}(k)$.

\n(see page 3 of the the Handbook File).

End of Lecture 1

The K² distribution. Consider $X_1, ..., X_n$, i.i.d random variables with
 $X_i \sim N(\sigma, 1)$. Then the random variable $X_i = \sum_{j=1}^{\infty} X_i^2$ has
a pdf $\oint_X (x) = \frac{X^{\kappa/2-1}e^{-x/\kappa}}{2^{\kappa/2} \Gamma(\kappa/2)}$, $x \ge 0$. RMK: the preof is straightforward (see p. 384 in [LM]) Mure M(Z)= ff="e=tht." Ruck: The x^2 distribution is part of the family
of Gumma distributions. These are distributions with Multinonial distr-n and goodness of firt. The multinomial distr-n is a straightforward generali zation of the binomial one constiter the situation where we have k possible aut consist the probabilities p_1 , p_2 of course $\sum_{i=1}^{l} p_i z_i$.

To we repeat the experiment n times, the probability

of getting the outcompe Γ_1 on \mathbb{R} , occassions, Γ_2 on \mathbb{R} , Γ_{κ}

exactly s

Rule: compare with the coefficient of
$$
p_r^k - p_s^k
$$
 in the expression $(p_1x - np_1)^n$.

\nExamplesion $(p_1x - np_1)^n$.

\nExample: Consider an undfair *die* with $P(x = i) = \frac{2i-1}{36}$.

\nBut question:

\nConsider an undfair *die* with $P(x = i) = \frac{2i-1}{36}$.

\nBut question:

\n(i) The die is tossed 3 times. What is the probability that your opd 6 cm each because, in the probability that your opd 6 cm each because, in the probability that the probability that the sum of the first side, and the

For an adequate apprex-n, we need to have (b) Let s_{1}, s_{2} be the observed trequences Aor the witcomes $r_1, ..., r_k$, let $n p_1, ..., n p_k$ be the
corresponding expected values according to the
null hypothesis. Then, at the 1 level of signifi-
came, the: $p_x(s) = p_0(s)$, i.e. $p_1 z p_0$, $p_1 z p_0$, $\neg p_s z p_s$.
is rejected if Example. In Queensboro the local soccer team played vas games last slagen with 60 wins, 25 losses and it draws. Fest the pwin=0.5, PLoss=0.3 and porous=0.2
at the 5% level of significance. Outcome Win Loss Draw $dz\frac{(60-50)^{2}}{50}+\frac{(25-30)^{2}}{30}+$ actual 60 25 15
Value
Expected 50 30 20 20 20 20 30 50 10 4 $(15-20)^2$ 24.083 .
 2^2 $0.045,2^2$ 5.99 . Since $d \leq \chi^2$ $0.05,2$ The accept χ^2 .

Vwo-way Fables. Suppose we have a collection of observations consisting if these measures are independent of each other. Example. Con Handedmess Right handed Left h. Total.

To perform the test we follow the procedure.
Step 1. Compute the expected values Eijz #rowited; 45,24 6,76 52 (Independent then, sex productives are
41.76 6.24 48 (independent then, sex P(L.h.n Male) =
5 + 13 100 we expect $\frac{13.52}{100.100}$ respect $\frac{13.52}{100.100}$ respect $\frac{13.52}{100.100}$ respect then then males. Step 2. Compute the test statistic males.
 $dz \geq \frac{1}{2} \sum_{i=1}^{m} \frac{(x_{ij} - E_{ij})^2}{E_{ij}}$, where $\frac{1}{2}$ remarker of polys

$$
d = \frac{(43-45.24)^{2}}{45.24} + \frac{(9-6.76)^{2}}{6.76} + \frac{(44-41.76)^{2}}{41.76} + \frac{(4-6.24)^{2}}{6.24}
$$

 $FFJ2$

$\frac{5+ep\ 3.}{p+1}$	Find the critical value $\chi^2_{df, 2}$, which is the the $df = (r-1)(c-1)$ and compare with $d + 0$ divided without the should accept H_0 at level of significant the $df_{1,0.05} = 3.941$
$d = \chi^2_{1,0.05} = 3.941$	
$d = \chi^2_{1,0.05} \Rightarrow acot\phi$	$H_0 \Rightarrow$ independent.

Reminder on Significance Level. Dett-n. Any function of the observed data whose
inumerical value dictates whether Ho is accepted or not is called a test statistic. Pet-n The probability that the test statistic lies in the critical region (the set of values which result
in rejection of Mr) is called the <u>level of significance</u> and is denoted by L. Example Goodness of fit. We considered the random variable $x^2 = \sum_{n=1}^{k} \frac{(x_{i}-np_{i})^2}{np_{i}}$, where
 p_{i} was the probability of the outcome r_{i} . The luggesthesis Ma was pr=p10,- pr=p2 for a collection of probabilities (pio, --, pkg). Then the pdf $f(X^2|H_0)$
(given Ho) was approx. the X^2 distr-n with k-1 degrees of Freedom. $Area = 9$ $U_v = \chi_{\lambda, d}$

If the test statistic d = 0.00, equivalently,
$$
P(X^2 \times C \times |H_0)
$$

\n(p-value test), we reject H_0 .

\nLet $x_{1,-1}x_n$ and $y_{1,-1}y_m$ form $\int e^{i\pi x} \frac{du}{du} du$ and y_m and z_m

\nLet $x_{1,-1}x_n$ and $y_{1,-1}y_m$ form $\int e^{i\pi x} du$ and y_m and z_m

\nStandard deviations 6.

\nLet $s_p^2 = \frac{(n-1) s_x^2 + (m-1) s_y^2}{h+m-2}$ be the pooled variance and $\frac{1}{2} (x_i - \overline{x})^2 + \sum_{i=1}^{\infty} (y_i - \overline{y})^2$

\nThen to test H_0 : $f(x_i - \overline{x})^2 + \sum_{i=1}^{\infty} (y_i - \overline{y})^2$

\nThe product H_0 is the number of $\frac{1}{2} (x_i - \overline{x})^2 + \sum_{i=1}^{\infty} (y_i - \overline{y})^2$

\nThe product H_0 is the interval of $\frac{1}{2} (x_i - \overline{x})^2 + \sum_{i=1}^{\infty} (y_i - \overline{y})^2$

\nThe product H_0 is the interval of $\frac{1}{2} (x_i - \overline{x})^2 + \sum_{i=1}^{\infty} (y_i - \overline{y})^2$

\n(a) $H_1: f_1x_2 + f_2$ is the interval of $\frac{1}{2} (x_i - \overline{x})^2$

\n(b) $H_1: f_1x_2 + f_2$ is the interval of $\frac{1}{2} (x_i - \overline{x})^2$

\n(c) $H_1: f_2x_2 + f_3$

\n(d) $\lim_{h \to 0} x \leq \lim_{h \to$

 $-t\lambda_{L1}$ nem-2

 t_1 the phen-2

Example. The University of Missouri gave a valodation
test to eithering students who had taken calculus in
high School. The group of 93 students received
credit had a mean score of 4.14 with a sample of 3.40.
of 3.70, while the group of 24 students who received
credit from a high school dual entroll must class, had
a mean score of 4.6t with sample 5t, duty. of 4.24.
Is there a significant difference in three muans
at the 1=0.01 level? (Assume the variables are equal
50-11:
$$
\overline{x} = 4.17
$$
, $\overline{y} = 4.61$
 $S_x = 3.7$, $S_y = 4.29$
 $n=93$ $m=24$
 $S_p^2 = \frac{92 \cdot 3.7^2 + 2.7 \cdot 4.24^2}{93 + 24 - 2}$
 $\overline{y} = \frac{42 \cdot 3.7^2 + 2.7 \cdot 4.24^2}{93 + 24 - 2}$
 $\overline{y} = \frac{42 \cdot 3.7^2 + 2.7 \cdot 4.24^2}{93 + 24 - 2}$
 $\overline{y} = \sqrt{\frac{12}{33} \cdot \frac{1}{29}}$
 $\overline{y} = 0.532$.

Grit. Valle it value= t 0.01, 119 = 2.617. As MK 2.617, accept Hs, i.e.

ANOVA.

Analysis of variations, used to test of the
means of three or more sample groups are the same. Assumptions: . The populations from which the samples are taken
must be normally or approx normally distributed
. The samples are independent
The variances must be equal (6)

Hypotheses. Hs: all means are canal (Moz Mz. z Mg)
Hg: at least one mean is different. Pet-n: a balanced are-way ANOVA refers to the special case of one-way ANOVA in which all the numbers of
observations in different groups are equal. An experi-
mental layout with different numbers of observations
is called <u>unbalanced</u>. Rmk: 'one-way' stands for me independent variable (fortor), i.e. the groups are 'parameterized' by a single variable. Let Xij depote the jth measurement in the ith populati $m.$ Then X_{ij} = μ_i + ϵ_{ij} , where ϵ_{ij} are i.i.d $N(\phi_j \phi^2)$ due to aur assumptions. The estimators of μi 's are $\overline{\chi}_{i}$'s writh $\overline{\chi}_{i} := \sum_{i=1}^{M} X_{i}$;
Here $M_i := \text{number of elements in } \text{group } i$.
Define $\overline{\chi} : z \frac{M_i \overline{\chi}_{i}}{\overline{\chi}_{i} M_i}$ to be the everall mean experimental,

35.6:
$$
= \sum_{i=1}^{4} \pi_{i} (k_{i} - \overline{x})^{2}
$$
, i.e. sum of squares between groups'
1000: i f. No. is true, then
$$
\sum_{k=1}^{55} \text{ has a } k^{2}-distr-h
$$

with $q-1$ degrees of freedom.
Since we also not know 6, use the approximation.
Since we also have been used to find the approximation.
55. $E := \sum_{i=1}^{4} (1)(-1) 5^{2}$, where
$$
5^{2} = \frac{1}{k-1} \sum_{j=1}^{4} (k_{j}-\overline{x}_{j})^{2}
$$

Then,
$$
SSE = \sum_{i=1}^{5} (k_{i}-1) 5^{2}
$$
, where
$$
5^{2} = \frac{1}{k-1} \sum_{j=1}^{5} (k_{j}-\overline{x}_{j})^{2}
$$

Then,
$$
SSE / J_{2} = \sum_{i=1}^{5} (k_{i}-1) 5^{2}
$$
, where
$$
S_{3} = \frac{1}{k-1} \sum_{j=1}^{5} (k_{j}-\overline{x}_{j})^{2}
$$

Then,
$$
I_{1} = \sum_{i=1}^{5} \text{ has a } k^{2} - \text{thick with } \frac{1}{k-1} \int_{0}^{1} \text{Area} \cdot \frac{1}{k-1} \cdot \frac{1}{k-1}
$$

Example. A hospital in Norwich is investigating and heart
possible relationship between agarette smaling and heart
rates. Four factor levels ranging from Nonsmalters to
team smokers were each represented by six subjects Are the differences among the groups statistically

Let
$$
\mu_1, \mu_2, \mu_3, \mu_4
$$
 denote the true average heart rates
\nin each of the groups. Then we need to test He: $\mu_1 = \mu_2 = \mu_3$.
\nWe find the mean estimators ("mean" stands for average
\nnot 'cruel' here):
\n $\frac{1}{x_1} = 62.3$ and hence, the overall experimental mean
\n $\frac{1}{x_2} = 63.2$ is $\frac{1}{x_1} = \frac{662.3 \times 63.2 + 71.7 + 91.7}{24} = 69.7$.
\n $\frac{1}{x_2} = 81.7$ (votic that $W_1 = W_2 = W_3 = M_4 = 6$ and $\frac{N}{9} = 24$).

Next we find $556 = 6 [(62.3 - 69.7)^2 + (63.2 - 69.7)^2 + (71.7 - 69.7)^2]$ $+(11.7-69.7)^{2}=1464.125$ and $SSE = 5. \frac{1}{5} (\sum_{i=1}^{4} (\overline{X}_{i}-\overline{X}_{i})^{2}) = [(69-62.3)^{2}+.+(65-62.3)]$ $+...+[(91-81.7)^{2}+...+{(84-81.7)}^{2}]=1594.833.$ Finally, the test statistic is $F = \frac{556}{555} \cdot \frac{N-q}{9-10} = \frac{1464.125}{1594.833} \cdot \frac{24-4}{4-1} = 6.12.$ On the other hand the critical value is $F_{0.05,3,20}$ = 3.10 (see page 24 of the 'Statistical Tables' file). Since FJF0.05,3,20, we reject the. Using the calculator TI 84, weget the answer

Exercise 1. (in preparation for Quiz 1)

\n**Exercise 2. (in preparation for Quiz 1)**

\n
$$
\frac{P \cdot 1, H(1)}{P(X=x)} = \frac{1}{P(X=x)} \cdot \frac{1}{P(X=x)} = \frac{1}{P(X=x)} \cdot \frac{1}{P(X=x)} = \frac{0.4e^{-t} + 0.3e^{t} + 0.25e^{t} + 0.05e^{t} + 0.05e^{t
$$

 $P.12$ +2. Test the p, = 0.4, p= 0.3, ps = 0.2, py= 0.1 at the 1% level, given the sample entrance 1234 $k = 4$ Total = 200 Expected values 1234
80604020 $d=\frac{(85-80)^2}{80}$ + $\frac{(10-60)^2}{60}$ + $\frac{(25-40)^2}{40}$ + $\frac{(20-20)^2}{20}$ = 7.604 $\chi^2_{0.05,3} = \frac{1}{3}$ (15. $\chi^2_{0.01,3} = 11.345$ Since $d < \chi^2$ 0.05, 3, accept Hout the 5% level. H.J. A random sample of 300 household is chosen and people
are asked where they live and their income (in 1 thousand).
This 131 74 37 level to see if the var-s
are independent. We will use the calculator TT BU. 1. Enter the table above in a matrix A. $2^{nd} \rightarrow x^{-1} \rightarrow E$ DIT \rightarrow 2x3 \rightarrow ENTER (enter values). (MATRIX) 2. 2^{nd} \rightarrow μ OPE \rightarrow STAT \rightarrow TESTS \rightarrow χ^2 ienter A for observed Values)
(QUDT) We get χ^2 2.913 < 9.21 = χ^2 .0.01, 2 =) accept.